Lesson 8. Drafting a Fantasy Basketball Team

Example 1. You're preparing for your upcoming fantasy basketball draft. You wonder: what is the best possible team you can draft? You have the following data:

- Projected **auction prices** for each player in the NBA.
- The **z-score** for each player: the sum of the number of standard deviations above the mean in the following 9 categories:
 - 1. points per 36 minutes
 - 2. 3 point field goals made per 36 minutes
 - 3. number of rebounds per 36 minutes
 - 4. number of assists per 36 minutes
 - 5. number of steals per 36 minutes
 - 6. number of blocks per 36 minutes
 - 7. *negative* of the number of turnovers per 36 minutes
 - 8. field goal percentage
 - 9. free throw percentage

Your roster must have exactly 12 players, and you have a budget of \$50. You want to maximize the total z-score of your team. Formulate this problem as a dynamic program by giving its shortest/longest path representation.

Stage
$$t \leftrightarrow consider$$
 player t $(t=0,1,...,T-1)$
 $\leftrightarrow cond of decision-making process$ $(t=T)$

Node $t_{n_1,n_2} \leftrightarrow n_1$ remaining budget and n_2 remaining rister spots at stage t $(n_1=0,1,...,50; n_2=0,1,...,12)$

Find longest path:

 t_{n_1,n_2} decision: don't take player t t_{n_2,n_2} t_{n_2} t_{n_2} t_{n_3,n_4} t_{n_4,n_4} $t_$

A Problems

Problem 1 (Airlift planning). You are in charge of determining which subset of the following requirements should be shipped on the next C-17 to another base:

Requirement	Capability Value	Weight (tons)	Volume (m ³)
Large munitions	50	43	250
Small munitions	30	17	130
Food	80	26	370
Medical supplies	40	4	180
Repair parts	70	35	400

The C-17 has a weight capacity of 80 tons, and a volume capacity of 700 m³. The goal is to maximize the total capability value of the requirements shipped.

Formulate this problem as a dynamic program by giving its shortest/longest path representation.

Problem 2 (Solving the airlift planning problem). See the accompanying Jupyter Notebook for this lesson.